Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 21(1): 87, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641833

RESUMEN

BACKGROUND: Bovine parvovirus (BPV) is an autonomous DNA virus with a smaller molecular size and subtle differences in its structural proteins, unlike other animal parvoviruses. More importantly, this virus has the potential to produce visible to silent economic catastrophes in the livestock business, despite receiving very little attention. Parvoviral virus-like particles (VLPs) as vaccines and as logistical platforms for vaccine deployment are well studied. However, no single experimental report on the role of VP1 in the assembly and stability of BPV-VLPs is available. Furthermore, the self-assembly, integrity and stability of the VLPs of recombinant BPV VP2 in comparison to VP1 VP2 Cap proteins using any expression method has not been studied previously. In this study, we experimentally evaluated the self-assembling ability with which BPV virus-like particles (VLPs) could be synthesized from a single structural protein (VP2) and by integrating both VP2 and VP1 amino acid sequences. METHODS: In silico and experimental cloning methods were carried out. His-tagged and without-His-tag VP2 and V1VP2-encoding amino acid sequences were cloned and inserted into pFastbacdual, and insect cell-generated recombinant protein was evaluated by SDS‒PAGE and western blot. Period of infectivity and expression level were determined by IFA. The integrity and stability of the BPV VLPs were evaluated by transmission electron microscopy. The secondary structure of the BPV VLPs from both VP2 and V1VP2 was analyzed by circular dichroism. RESULTS: Our findings show that VP2 alone was equally expressed and purified into detectable proteins, and the stability at different temperatures and pH values was not appreciably different between the two kinds of VLPs. Furthermore, BPV-VP2 VLPs were praised for their greater purity and integrity than BPV-VP1VP2 VLPs, as indicated by SDS‒PAGE. Therefore, our research demonstrates that the function of VP1 has no bearing on the stability or integrity of BPV-VLPs. CONCLUSIONS: In summary, incredible physiochemically stable BPV VP2-derived VLPs have been found to be promising candidates for the development of multivalent vaccines and immunodiagnostic kits against enteric viruses and to carry heterogeneous epitopes for various economically important livestock diseases.


Asunto(s)
Bocavirus , Parvovirus , Vacunas , Animales , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas de la Cápside/genética
2.
Vet Res ; 54(1): 90, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845739

RESUMEN

Vaccination with E2 subunit vaccines is currently the main measure to control classical swine fever virus (CSFV), which is an endemic disease, and detection of antibodies against CSFV E2 is the most effective way to evaluate herd immunity. In the present study, the E2 protein was expressed by a baculovirus expression system, and two monoclonal antibodies (mAbs), namely, 3A9 and 4F7, were successfully produced using techniques for the isolation of single B cells from splenocytes from mice immunized with the E2 protein. Moreover, two linear B-cell epitopes, 25GLTTTWKEYSHDLQL39 and 259GNTTVKVHASDERGP273, reactive to 3A9 and 4F7, respectively, were identified using epitope mapping of the E2 protein. In addition, the diagnostic performance of the two mAbs was evaluated using blocking enzyme-linked immunosorbent assay (bELISA), and the results showed that the two mAbs had high diagnostic specificity (96.08%, 94.38%) and diagnostic sensitivity (97.49%, 95.97%). Together, these findings identify two ideal candidate peptides and matching mAbs for a new method of CSFV diagnosis, which will contribute to the control and eradication of classical swine fever.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Ratones , Anticuerpos Antivirales , Peste Porcina Clásica/prevención & control , Linfocitos B , Anticuerpos Monoclonales , Proteínas del Envoltorio Viral
3.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630946

RESUMEN

Inspired by its highly efficient capability to deal with big data, the brain-like computational system has attracted a great amount of attention for its ability to outperform the von Neumann computation paradigm. As the core of the neuromorphic computing chip, an artificial synapse based on the memristor, with a high accuracy in processing images, is highly desired. We report, for the first time, that artificial synapse arrays with a high accuracy in image recognition can be obtained through the fabrication of a SiNz:H memristor with a gradient Si/N ratio. The training accuracy of SiNz:H synapse arrays for image learning can reach 93.65%. The temperature-dependent I-V characteristic reveals that the gradual Si dangling bond pathway makes the main contribution towards improving the linearity of the tunable conductance. The thinner diameter and fixed disconnection point in the gradual pathway are of benefit in enhancing the accuracy of visual identification. The artificial SiNz:H synapse arrays display stable and uniform biological functions, such as the short-term biosynaptic functions, including spike-duration-dependent plasticity, spike-number-dependent plasticity, and paired-pulse facilitation, as well as the long-term ones, such as long-term potentiation, long-term depression, and spike-time-dependent plasticity. The highly efficient visual learning capability of the artificial SiNz:H synapse with a gradual conductive pathway for neuromorphic systems hold great application potential in the age of artificial intelligence (AI).

4.
Virology ; 582: 48-56, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023612

RESUMEN

Senecavirus A (SVA) is an important pathogenic cause of vesicular disease in pigs worldwide. In this study, we screened the B-cell epitopes of SVA using a bioinformatics approach combined with an overlapping synthetic polypeptide method. Four dominant B-cell epitopes (at amino acid (aa) positions: 7-26, 48-74, 92-109, and 129-144) from the VP1 protein and five dominant B-cell epitopes (aa: 38-57, 145-160, 154-172, 193-208, 249-284) from the VP2 protein were identified. Multi-epitope genes comprising the identified B-cell epitope domains were synthesized, prokaryotic expressed, and purified, and their immune protection efficacy was evaluated in piglets. Our results showed that the multi-epitope recombinant protein rP2 induced higher neutralizing antibodies and provided 80% protection against homologous SVA challenge. Thus, the B-cell epitope peptides identified in this study are potential candidates for SVA vaccine development, and rP2 may offer safety and efficacy in controlling infectious SVA.


Asunto(s)
Epítopos de Linfocito B , Picornaviridae , Animales , Porcinos , Epítopos de Linfocito B/genética , Picornaviridae/genética , Anticuerpos Neutralizantes , Vacunas Sintéticas , Péptidos
5.
Nanomaterials (Basel) ; 13(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985856

RESUMEN

Three-dimensional NAND flash memory with high carrier injection efficiency has been of great interest to computing in memory for its stronger capability to deal with big data than that of conventional von Neumann architecture. Here, we first report the carrier injection efficiency of 3D NAND flash memory based on a nanocrystalline silicon floating gate, which can be controlled by a novel design of the control layer. The carrier injection efficiency in nanocrystalline Si can be monitored by the capacitance-voltage (C-V) hysteresis direction of an nc-Si floating-gate MOS structure. When the control layer thickness of the nanocrystalline silicon floating gate is 25 nm, the C-V hysteresis always maintains the counterclockwise direction under different step sizes of scanning bias. In contrast, the direction of the C-V hysteresis can be changed from counterclockwise to clockwise when the thickness of the control barrier is reduced to 22 nm. The clockwise direction of the C-V curve is due to the carrier injection from the top electrode into the defect state of the SiNx control layer. Our discovery illustrates that the thicker SiNx control layer can block the transfer of carriers from the top electrode to the SiNx, thereby improving the carrier injection efficiency from the Si substrate to the nc-Si layer. The relationship between the carrier injection and the C-V hysteresis direction is further revealed by using the energy band model, thus explaining the transition mechanism of the C-V hysteresis direction. Our report is conducive to optimizing the performance of 3D NAND flash memory based on an nc-Si floating gate, which will be better used in the field of in-memory computing.

6.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36770567

RESUMEN

Artificial neural networks, as a game-changer to break up the bottleneck of classical von Neumann architectures, have attracted great interest recently. As a unit of artificial neural networks, memristive devices play a key role due to their similarity to biological synapses in structure, dynamics, and electrical behaviors. To achieve highly accurate neuromorphic computing, memristive devices with a controllable memory window and high uniformity are vitally important. Here, we first report that the controllable memory window of an HfO2/TiOx memristive device can be obtained by tuning the thickness ratio of the sublayer. It was found the memory window increased with decreases in the thickness ratio of HfO2 and TiOx. Notably, the coefficients of variation of the high-resistance state and the low-resistance state of the nanocrystalline HfO2/TiOx memristor were reduced by 74% and 86% compared with the as-deposited HfO2/TiOx memristor. The position of the conductive pathway could be localized by the nanocrystalline HfO2 and TiO2 dot, leading to a substantial improvement in the switching uniformity. The nanocrystalline HfO2/TiOx memristive device showed stable, controllable biological functions, including long-term potentiation, long-term depression, and spike-time-dependent plasticity, as well as the visual learning capability, displaying the great potential application for neuromorphic computing in brain-inspired intelligent systems.

7.
Virology ; 578: 180-189, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586181

RESUMEN

Porcine deltacoronavirus is an evolving coronavirus that primarily infects the intestine and may lead to intestinal disease in piglets. Up to now, no commercial vaccination is readily accessible to protect against the spread of PDCoV. Lactococcus lactis has been shown to have good immune efficacy and safety and can be used as a genetically engineered vaccine to deliver antigens. In this research, we utilized L. lactis NZ9000 to provide the S1 protein orally and improved the delivery efficiency by connecting the M cell targeting ligand Co1 with the S1 protein of PDCoV in tandem to obtain the recombinant protein S1-Co1. We successfully constructed two recombinant strains capable of expressing PDCoV-S1 and PDCoV-S1-Co1 proteins (i.e., L. lactis NZ9000-S1 and L. lactis NZ9000-S1-Co1), and their immunogenic capacity was evaluated in mice. Our study shows that Lactococcus is an advantageous bacterial live vector vaccine and is anticipated as a potential PDCoV vaccination option.


Asunto(s)
Lactococcus lactis , Animales , Ratones , Porcinos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Inmunidad Mucosa , Vacunación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Administración Oral
8.
Virol J ; 19(1): 204, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461023

RESUMEN

BACKGROUND: Senecavirus A (SVA) is a pathogen that has recently caused porcine idiopathic vesicular disease (PIVD). The clinical signs are similar to those of foot-and-mouth disease, porcine vesicular disease, and vesicular stomatitis. Therefore, identification of SVA as a cause of PIVD is important to eliminate this emerging pathogen. METHODS: In this study, an indirect ELISA based on the VP2 epitope (VP2-epitp-ELISA) was developed to detect antibodies directed against SVA. RESULTS: A novel linear epitope (271GLRNRFTTGTDEEQ284) was first identified at the C-terminus of the VP2 protein by epitope mapping. The diagnostic performance of VP2-epitp-ELISA was estimated by testing a panel of known background sera from swine. Under the optimum test conditions, when the cutoff value was 37%, the diagnostic sensitivity (Dn) and diagnostic specificity (Dp) of the assay were 91.13% and 91.17%, respectively. The accuracy of VP2-epitp-ELISA was validated and further compared with that of commercial diagnostic kits. The diagnostic results showed that VP2-epitp-ELISA did not cross-react with serum positive for other idiopathic vesicular diseases and had a concordance rate of 90.41% with the Swinecheck® SVA bELISA. CONCLUSIONS: These results indicate that VP2-epitp-ELISA is suitable for specific detection of antibodies against SVA in swine.


Asunto(s)
Anticuerpos , Picornaviridae , Porcinos , Animales , Epítopos , Ensayo de Inmunoadsorción Enzimática
9.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889681

RESUMEN

As a strong candidate for computing in memory, 3D NAND flash memory has attracted great attention due to the high computing efficiency, which outperforms the conventional von-Neumann architecture. To ensure 3D NAND flash memory is truly integrated in the computing in a memory chip, a new candidate with high density and a large on/off current ratio is now urgently needed. Here, we first report that 3D NAND flash memory with a high density of multilevel storage can be realized in a double-layered Si quantum dot floating-gate MOS structure. The largest capacitance-voltage (C-V) memory window of 6.6 V is twice as much as that of the device with single-layer nc-Si quantum dots. Furthermore, the stable memory window of 5.5 V can be kept after the retention time of 105 s. The obvious conductance-voltage (G-V) peaks related to the charging process can be observed, which further confirms that the multilevel storage can be realized in double-layer Si quantum dots. Moreover, the on/off ratio of 3D NAND flash memory with a nc-Si floating gate can reach 104, displaying the characteristic of a depletion working mode of an N-type channel. The memory window of 3 V can be maintained after 105 P/E cycles. The programming and erasing speed can arrive at 100 µs under the bias of +7 V and -7 V. Our introduction of double-layer Si quantum dots in 3D NAND float gating memory supplies a new way to the realization of computing in memory.

10.
Nanomaterials (Basel) ; 12(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35745449

RESUMEN

To enable a-SiCx:H-based memristors to be integrated into brain-inspired chips, and to efficiently deal with the massive and diverse data, high switching uniformity of the a-SiC0.11:H memristor is urgently needed. In this study, we introduced a TiSbTe layer into an a-SiC0.11:H memristor, and successfully observed the ultra-high uniformity of the TiSbTe/a-SiC0.11:H memristor device. Compared with the a-SiC0.11:H memristor, the cycle-to-cycle coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors was reduced by 92.5% and 66.4%, respectively. Moreover, the device-to-device coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors decreased by 93.6% and 86.3%, respectively. A high-resolution transmission electron microscope revealed that a permanent TiSbTe nanocrystalline conductive nanofilament was formed in the TiSbTe layer during the DC sweeping process. The localized electric field of the TiSbTe nanocrystalline was beneficial for confining the position of the conductive filaments in the a-SiC0.11:H film, which contributed to improving the uniformity of the device. The temperature-dependent I-V characteristic further confirmed that the bridge and rupture of the Si dangling bond nanopathway was responsible for the resistive switching of the TiSbTe/a-SiC0.11:H device. The ultra-high uniformity of the TiSbTe/a-SiC0.11:H device ensured the successful implementation of biosynaptic functions such as spike-duration-dependent plasticity, long-term potentiation, long-term depression, and spike-timing-dependent plasticity. Furthermore, visual learning capability could be simulated through changing the conductance of the TiSbTe/a-SiC0.11:H device. Our discovery of the ultra-high uniformity of TiSbTe/a-SiC0.11:H memristor devices provides an avenue for their integration into the next generation of AI chips.

11.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159656

RESUMEN

As the building block of brain-inspired computing, resistive switching memory devices have recently attracted great interest due to their biological function to mimic synapses and neurons, which displays the memory switching or threshold switching characteristic. To make it possible for the Si-based artificial neurons and synapse to be integrated with the neuromorphic chip, the tunable threshold and memory switching characteristic is highly in demand for their perfect compatibility with the mature CMOS technology. We first report artificial neurons and synapses based on the Al/a-SiNxOy:H/P+-Si device with the tunable switching from threshold to memory can be realized by controlling the compliance current. It is found that volatile TS from Al/a-SiNxOy:H/P+-Si device under the lower compliance current is induced by the weak Si dangling bond conductive pathway, which originates from the broken Si-H bonds. While stable nonvolatile MS under the higher compliance current is attributed to the strong Si dangling bond conductive pathway, which is formed by the broken Si-H and Si-O bonds. Theoretical calculation reveals that the conduction mechanism of TS and MS agree with P-F model, space charge limited current model and Ohm's law, respectively. The tunable TS and MS characteristic of Al/a-SiNxOy:H/P+-Si device can be successfully employed to mimic the biological behavior of neurons and synapse including the integrate-and-fire function, paired-pulse facilitation, long-term potentiation and long-term depression as well as spike-timing-dependent plasticity. Our discovery supplies an effective way to construct the neuromorphic devices for brain-inspired computing in the AI period.

12.
Front Microbiol ; 13: 832275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154063

RESUMEN

Phosphorylation is a widespread posttranslational modification that regulates numerous biological processes. Viruses can alter the physiological activities of host cells to promote virus particle replication, and manipulating phosphorylation is one of the mechanisms. Senecavirus A (SVA) is the causative agent of porcine idiopathic vesicular disease. Although numerous studies on SVA have been performed, comprehensive phosphoproteomics analysis of SVA infection is lacking. The present study performed a quantitative mass spectrometry-based phosphoproteomics survey of SVA infection in Instituto Biologico-Rim Suino-2 (IBRS-2) cells. Three parallel experiments were performed, and 4,520 phosphosites were quantified on 2,084 proteins. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many phosphorylated proteins were involved in apoptosis and spliceosome pathways, and subcellular structure localization analysis revealed that more than half were located in the nucleus. Motif analysis of proteins with differentially regulated phosphosites showed that proline, aspartic acid, and glutamic acid were the most abundant residues in the serine motif, while proline and arginine were the most abundant in the threonine motif. Forty phosphosites on 27 proteins were validated by parallel reaction monitoring (PRM) phosphoproteomics, and 30 phosphosites in 21 proteins were verified. Nine proteins with significantly altered phosphosites were further discussed, and eight [SRRM2, CDK13, DDX20, DDX21, BAD, ELAVL1, PDZ-binding kinase (PBK), and STAT3] may play a role in SVA infection. Finally, kinase activity prediction showed 10 kinases' activity was reversed following SVA infection. It is the first phosphoproteomics analysis of SVA infection of IBRS-2 cells, and the results greatly expand our knowledge of SVA infection. The findings provide a basis for studying the interactions of other picornaviruses and their mammalian host cells.

13.
Nanomaterials (Basel) ; 13(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615995

RESUMEN

With the big data and artificial intelligence era coming, SiNx-based resistive random-access memories (RRAM) with controllable conductive nanopathways have a significant application in neuromorphic computing, which is similar to the tunable weight of biological synapses. However, an effective way to detect the components of conductive tunable nanopathways in a-SiNx:H RRAM has been a challenge with the thickness down-scaling to nanoscale during resistive switching. For the first time, we report the evolution of a Si dangling bond nanopathway in a-SiNx:H resistive switching memory can be traced by the transient current at different resistance states. The number of Si dangling bonds in the conducting nanopathway for all resistive switching states can be estimated through the transient current based on the tunneling front model. Our discovery of transient current induced by the Si dangling bonds in the a-SiNx:H resistive switching device provides a new way to gain insight into the resistive switching mechanism of the a-SiNx:H RRAM in nanoscale.

14.
Viruses ; 13(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34696469

RESUMEN

Foot and mouth disease virus (FMDV), whose transmission occurs through mucosal surfaces, can also be transmitted through aerosols, direct contact, and pollutants. Therefore, mucosal immunity can efficiently inhibit viral colonization. Since vaccine material delivery into immune sites is important for efficient oral mucosal vaccination, the M cell-targeting approach is important for effective vaccination given M cells are vital for luminal antigen influx into the mucosal lymph tissues. In this study, we coupled M cell-targeting ligand Co1 to multi-epitope TB1 of FMDV to obtain TB1-Co1 in order to improve delivery efficiency of the multi-epitope protein antigen TB1. Lactococcus lactis (L. lactis) was engineered to express heterologous antigens for applications as vaccine vehicles with the ability to elicit mucosal as well as systemic immune responses. We successfully constructed L. lactis (recombinant) with the ability to express multi-epitope antigen proteins (TB1 and TB1-Co1) of the FMDV serotype A (named L. lactis-TB1 and L. lactis-TB1-Co1). Then, we investigated the immunogenic potential of the constructed recombinant L. lactis in mice and guinea pigs. Orally administered L. lactis-TB1 as well as L. lactis-TB1-Co1 in mice effectively induced mucosal secretory IgA (SIgA) and IgG secretion, development of a strong cell-mediated immune reactions, substantial T lymphocyte proliferation in the spleen, and upregulated IL-2, IFN-γ, IL-10, and IL-5 levels. Orally administered ligand-conjugated TB1 promoted specific IgG as well as SIgA responses in systemic and mucosal surfaces, respectively, when compared to orally administered TB1 alone. Then, guinea pigs were orally vaccinated with L. lactis-TB1-Co1 plus adjuvant CpG-ODN at three different doses, L. lactis-TB1-Co1, and PBS. Animals that had been immunized with L. lactis-TB1-Co1 plus adjuvant CpG-ODN and L. lactis-TB1-Co1 developed elevated antigen-specific serum IgG, IgA, neutralizing antibody, and mucosal SIgA levels, when compared to control groups. Particularly, in mice, L. lactis-TB1-Co1 exhibited excellent immune effects than L. lactis-TB1. Therefore, L. lactis-TB1-Co1 can induce elevations in mucosal as well as systemic immune reactions, and to a certain extent, provide protection against FMDV. In conclusion, M cell-targeting approaches can be employed in the development of effective oral mucosa vaccines for FMDV.


Asunto(s)
Epítopos/inmunología , Virus de la Fiebre Aftosa/metabolismo , Fiebre Aftosa/inmunología , Lactococcus lactis/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Modelos Animales de Enfermedad , Femenino , Virus de la Fiebre Aftosa/genética , Cobayas , Inmunidad Mucosa/inmunología , Inmunización , Inmunoglobulina A Secretora , Lactococcus lactis/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes , Vacunación , Vacunas Virales/inmunología
15.
Front Pharmacol ; 12: 697720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239444

RESUMEN

Perivascular adipose tissue (PVAT) is a unique fat depot with local and systemic impacts. PVATs are anatomically, developmentally, and functionally different from classical adipose tissues and they are also different from each other. PVAT adipocytes originate from different progenitors and precursors. They can produce and secrete a wide range of autocrine and paracrine factors, many of which are vasoactive modulators. In the context of obesity-associated low-grade inflammation, these phenotypic and functional differences become more evident. In this review, we focus on the recent findings of PVAT's heterogeneity by comparing commonly studied adipose tissues around the thoracic aorta (tPVAT), abdominal aorta (aPVAT), and mesenteric artery (mPVAT). Distinct origins and developmental trajectory of PVAT adipocyte potentially contribute to regional heterogeneity. Regional differences also exist in ways how PVAT communicates with its neighboring vasculature by producing specific adipokines, vascular tone regulators, and extracellular vesicles in a given microenvironment. These insights may inspire new therapeutic strategies targeting the PVAT.

16.
J Phys Chem Lett ; 11(19): 8451-8458, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32914985

RESUMEN

With the coming of the big data age, the resistive switching memory (RSM) of three-dimensional (3D) high density shows a significant application in information storage and processing due to its simple structure and size-scalable characteristic. However, an electrical initialization process makes the peripheral circuits of 3D integration too complicated to be realized. Here a new forming-free SiCx:H-based device can be obtained by tuning the Si dangling bond conductive channel. It is discovered that the forming-free behavior can be ascribed to the Si dangling bonds in the as-deposited SiCx:H films. By tuning the number of Si dangling bonds, the forming-free SiCx:H RSM exhibits a tunable memory window. The fracture and connection of the Si dangling bond conduction pathway induces the switching from the high-resistance state (HRS) to the low-resistance state (LRS). Our discovery of forming-free SiCx:H resistive switching memory with tunable pathway opens a way to the realization of 3D high-density memory.

17.
Biotechnol Lett ; 42(10): 1907-1917, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32385744

RESUMEN

OBJECTIVE: Development of an effective mucosal vaccine to induce specific immune responses against Foot-and-mouth disease virus (FMDV). RESULTS: For this purpose, the FMDV VP1 gene (SPVP1) was optimized and synthesized based on the codon bias of Lactococcus lactis (L. lactis), and then incorporated in the plasmid pNZ8148. L. lactis NZ9000 containing the pNZ8148-SPVP1 recombinant plasmid was used as an oral delivery vehicle to induce anti-FMDV mucosal and systemic immune responses in mice. After confirmation that the SPVP1 protein was expressed successfully in the recombinant L. latic, the mice were orally challenged with NZ9000-pNZ8148, NZ9000-pNZ8148-SPVP1, phosphate-buffered saline as a mock infection group, or with inactivated vaccine as a positive group. Mice immunized with NZ9000-pNZ8148-SPVP1 produced high levels of mucosal secretory IgA (sIgA), antigen-specific serum IgG, IgA, and neutralizing antibodies, and developed stronger cell-mediated immune reactions and significant T spleen lymphocyte proliferation. Furthermore, the recombinant group generated much higher levels of IFN-γ, IL-2, IL-4, IL-5, and IL-10 than the other groups. CONCLUSIONS: Potent immune responses were successfully elicited in mice with FMDV VP1 delivered through L. lactis.


Asunto(s)
Fiebre Aftosa , Lactococcus lactis/genética , Vacunas de ADN , Vacunas Virales , Administración Oral , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Citocinas/sangre , Femenino , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/inmunología , Inmunidad Mucosa/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Virales/inmunología
18.
Transbound Emerg Dis ; 67(5): 1797-1803, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32239638

RESUMEN

The high performance of chemiluminescence immunoassays (CLIAs) in diagnosis has been gradually recognized in recent years, but their application in the diagnosis of classical swine fever (CSF) has not been reported. Here, a recombinant E2 (rE2) protein and a peroxidase-conjugated monoclonal antibody (MAb G5) were used to develop a competition-based chemiluminescence immunoassay (cCLIA) for rapid and accurate detection of E2-specific antibodies in pig serum. To evaluate the feasibility of cCLIA in the diagnosis of CSF, we developed a competition-based enzyme-linked immunosorbent assay (cELISA) as a control. Under the optimum test conditions, cCLIA showed a higher signal-to-noise ratio than that of the control cELISA. The best signal-to-noise ratios of cCLIA and cELISA were 70 and 17, respectively. Then, the diagnostic performance of the two assays was compared by examining a panel of pig serum samples (n = 285) with a confirmed status, and cCLIA showed higher diagnostic sensitivity (Dn) and diagnostic specificity (Dp) values than those of cELISA. The Dn and Dp of cCLIA were 97.49% and 96.08%, respectively, and those of cELISA were 93.97% and 94.12%, respectively. Furthermore, cCLIA can provide results within 20 min, whereas the control cELISA requires at least 1 hr. According to these findings, the newly developed cCLIA has potential application in the diagnosis of CSF and offers an alternative approach for efficient and rapid detection of E2-specific antibodies.

19.
Nanoscale Res Lett ; 15(1): 11, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31940099

RESUMEN

The AlOx-based resistive switching memory device is fabricated by an oxidation diffusion process that involves depositing an Al film on an ITO substrate and annealing at 400 °C in a vacuum. An AlOx interface layer with a thickness of ~ 20 nm is formed as a resistance switching layer. Bipolar and unipolar resistive switching (RS) behaviours are obtained when the compliance current is limited (≥ 1 mA). In the unipolar RS behaviour, the devices fail to perform set/reset cycles at a low temperature (40 K), which suggests that Joule heating is essential for the unipolar RS behaviour. In the bipolar RS behaviour, the abrupt reset transforms into a gradual reset with decreasing temperature, which suggests that Joule heating affects the rupture of the conductive filament. In addition, the conductive mechanisms in the high-resistance state and low-resistance state are revealed by the temperature dependence of the I-V curves. For the low-resistance state, the conduction mechanism is due to the electron hopping mechanism, with a hopping activation energy of 9.93 meV. For the high-resistance state, transport mechanism is dominated by the space-charge-limited conduction (SCLC) mechanism.

20.
ACS Appl Mater Interfaces ; 11(43): 39991-39997, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31592631

RESUMEN

Due to the ever-growing demand for cost-effective batteries toward greener and sustainable applications, continuous effort has been devoted to tailoring the interfacial kinetics of electrode materials. Herein, surface anionization has been introduced for the hierarchical assembly of iron sulfides on three-dimensional (3D) graphene foam (denoted FeS2@3DGF and FeS@3DGF). The surface-anchored sulfate species provide ideal electroactive sites, which is correlated with enhanced capacitive contribution and boosted energy storage. Consequently, remarkable rate capability and stable cyclability can be achieved in alkaline-metal-ion batteries. Specifically, FeS@3DGF displays superb cycling stability when evaluated as anodes for Li-ion batteries (a steady capacity of 1109 mAh g-1 after 200 cycles at 200 mA g-1). Moreover, superior rate capability can be achieved for Na-ion batteries (203 mAh g-1 at 10 000 mA g-1). These findings provide new insights into reinforcing interface kinetics during electrochemical processes and hold great promise for versatile applications in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...